Exam D (Part I)

Name

1. The graph of the equation $x^{2}+6 x+y^{2}-4 y-36$ is a circle. Find the center and the radius of this circle (by completing squares).
2. Let θ be any angle. Place the unit circle on an $x y$-coordinate system and explain why the formulas $\sin (\pi-\theta)=\sin \theta$ and $\cos (\pi-\theta)=-\cos \theta$ hold.
3. A 10 foot long ladder leaning against a vertical wall is sliding on the slippery horizontal surface that supports it. The figure illustrates the ladder in typical position within an $x y$-coordinate system. The point $P=(x, y)$ is fixed on the ladder 6 feet from its upper tip (and hence 4 feet from its lower tip). Show that as the ladder slips, the point P describes an ellipse with semimajor axis 6 and semiminor axis 4. (Start by using similar triangles to determine the lengths x_{1} and y_{1} in terms of the coordinates x and y respectively.)

4. Use Leibniz's tangent method to compute the slope of the tangent to the curve $y^{2}=x^{2}+2$ at any point $P=(x, y)$. Make use of your answer to compute the derivative of the function $f(x)=\sqrt{x^{2}+2}$.
5. Consider the graph of the function $f(x)=x^{2}$ over the interval $0 \leq x \leq 2$ and sketch it. Place a rectangle under this graph so that its bottom side lies on the x-axis between 0 and 2 .
i. Determine the largest area that such a rectangle can have. What are the dimensions of the rectangle with the largest area?
ii. What fraction of the total area under the graph of $f(x)=x^{2}$ over $0 \leq x \leq 2$ does this rectangle take up?
6. Consider the function $g(x)=9-x^{2}$ with $0 \leq x \leq 1$. Insert the points $0 \leq 0.3 \leq 0.5 \leq 0.8 \leq 1$ on the x-axis between 0 and 1 and compute the sum $g(x) \cdot d x$ that this set of points determines. Do so with three decimal place accuracy. This sum is an approximation of the area under the graph of $g(x)=9-x^{2}$ over $0 \leq x \leq 1$. Sketch what is going on in the space below. Use the fundamental theorem of calculus to compute this area precisely.
7. Consider the graph of $f(x)=x^{3}$ for $0 \leq x \leq 3$. Find the volume of the solid obtained by rotating the region under the graph (and above the x-axis) one revolution around the x-axis.
8. Use the powerseries $\frac{1}{1+x} \approx 1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots$ to approximate $\int_{0}^{1} \frac{1}{1+\frac{1}{8} x^{3}} d x$ with four decimal accuracy.
9. A point is moving in the $x-y$ plane starting at time $t=0$. Its x and y coordinates at any time $t>0$ are given by $x(t)=t^{\frac{1}{2}}$ and $y(t)=t+2$. Determine an equation of curve in the $x-y$ plane along which the point travels and sketch its graph below.
i. Compute the velocities in the x - and y-directions and the velocity overall.
ii. Compute the accelerations in the x - and y-directions.
iii. By discussing the velocities and forces (use $F=m a$ with $m=1$) in the x - and y-directions, describe how the point traces out its path.
